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Fig. 1 Iterative estimates of typical rolling moment derivatives.

immediately by indications to leave the active set, can result, par-
ticularly as the minimum of the cost function is approached. The
reason for thisis twofold: 1) the roundofferrors becoming dominant,
and the gradients computed using the numerical approximationsare
inaccurate;and 2) some variables are approximately linearly depen-
dent. This phenomenon was, however, not encountered in several
examples of estimatingnonlinearaerodynamic parameters with var-
ious degrees of complexity.

Errata

Conclusion

The widely used Gauss-Newton method for aircraft parameter
estimationin the time domain has been successfullyextended to ac-
count for simple bounds on the variables. From an engineer’s point
of view and for implementation purposes, the active set strategy ap-
pears to be a simple, direct, and efficient approach. Additionally, the
approachretains all of the advantages of the classical unconstrained
Gauss-Newton at marginally larger computational overhead. The
method extends, in general, the scope of aircraft parameter estima-
tion by permitting the limitation of the variables to be estimated
within a specified range. The performance of the bounded-variable
Gauss-Newton method presented in this Note was demonstrated on
a typical example of estimating the stability and control derivatives
pertaining to the lateral-directionalmotion of an aircraft from flight
data.
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E QUATION (6) should be:
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On page 532, the second sentence of the last paragraph should
read: “This may be considered an upper (or rearward) bound as the
wing sweep tends to 90 deg and the wing’s trailing-edgeextent tends
to 0



